UTI imaging algorithms revisited in the light of modern approaches - when to image, whom, how?

Michael Riccabona
Division of Pediatric Radiology
Department of Radiology
University Hospital LKH Graz, Austria

ESPR uroadiology task force
ESUR pediatric work group
Introduction

• UTI common in children
 – overall prevalence 2-8%

• Risk of recurrent UTI = 12- 30%
 – in first year after initial UTI
 – particularly in first years of life
Introduction

• UTI common in children
• Risk of recurrent UTI = 12-30%

• Complications & risks of upper UTI
 - acute complications = abscess ...
 - develop renal scars
 ▪ particularly in infancy

• Complications from renal scarring
 - hypertension
 - proteinuria
 - pregnancy-related complications
 - end-stage renal failure
Introduction: UTI - diagnosis

- UTI common in children, risk of recurrent UTI
- Complications & risks of upper UTI, renal scarring
- Symptoms in infancy often unspecific
 ⇄ proper urine sample essential
 - proper technique (sampling, culture, ...)
 - reliable results? additional laboratory data?
Introduction: UTI - diagnosis

- UTI common in children, risk of recurrent UTI
- Complications & risks of upper UTI, renal scarring
- Symptoms in infancy often unspecific
 ➡ proper urine sample essential
 ➡ classification
 - febrile = upper UTI / aPN
 - lower UTI / cystitis & urethritis
 - difference: renal involvement
 NOTE: only renal involvement causes scaring
Imaging in UTI

Aim of imaging in UTI

• to (early) identify risk factors & abnormalities that can be modified
• to decrease likelihood of recurrent (upper) UTI
• to reduce risk of renal scarring

How to image: Top-down and/or Down-Up?

Previously

- **US**
- **IVU + DMSA**
 - diagnose & localize UTI
- **VCUG in all patients**
 - for detection of VUR
 + follow-up

BUT: Today's knowledge based on this approach
 - though invasive and rigorous, still was helpful
Congenital VUR often vanishes spontaneously
 - or at least diminishes
 - even higher grades
 - without sequalea

Low grade VUR (I / II°) in itself without risk
 - not for UTI recurrence
 - not for renal damage
Today’s new knowledge on VUR

- Congenital VUR often vanishes spontaneously
- Low grade VUR (I / II°) in itself without risk
- High grade VUR has varying & unpredictable impact
 - even in patients with UTI
 - often already fetal dysplasia (cRNP) - cannot be influenced
- Renal scarring
 - can occur after UTI even without detectable VUR

BUT: limited VUR detection by VCUG

- VUR in children with UTI without VUR on VCUG?
- in many: VUR on ce-VUS or endoscopic techniques (PIC)
Today’s new knowledge on VUR

• Congenital VUR often vanishes spontaneously
• Low grade VUR (I / II°) in itself without risk
• High grade VUR has varying & unpredictable impact
• Renal scarring, UTI cause & course
 – many factors may impact UTI frequency & renal scarring
 ▪ behavior / fashion / social aspects …
 ▪ epidemiologic, kind & behavior of micro-organism
 ▪ treatment onset, kind, response …
 ▪ genetic preposition?
 ▪ bladder function disturbance
Today’s new knowledge on VUR

- Congenital VUR often vanishes spontaneously
- Low grade VUR (I / II°) in itself without risk
- High grade VUR has varying & unpredictable impact
- Renal scarring, UTI reasons multi-factorial
- Treatment also changed
 - less aggressive surgically, new endoscopic treatment options ...
 - even AB-prophylaxis under discussion

lots of controversy, ongoing debate

Objective

• To discuss role of imaging in UTI
 – reflecting new therapy concepts
 – based on new knowledge & insights into pathophysiology
 – address “bottom-up” versus “top-down” approach

• To describe relevant imaging techniques

• To give typical examples

• To propose imaging algorithm for diagnostic imaging

• To address how to deal with complications
Objective of imaging today

- Find underlying conditions that make patient more susceptible for renal damage
- Monitor kidneys to assess (risk of) renal damage
- growth impairment
Imaging methods

• US

• VCUG / RNC, ce-VUS

• DMSA

• IVU

• MRI

• CT
Imaging methods

- **US** = accepted initial & universal imaging tool
 - HN, UTI, screening ...

- **Requisites:**
 - proper transducers
 - good hydration
 - full bladder
 - knowledge & experience
 - clinical data
 - post-void assessment
 - need sufficient time
Imaging methods - US

- **US signs for VUR**
 - gaping ostium (diagnostic)
 - VUR visualization by CDS (diagnostic)
 - ureteral / pelvic / caliceal dilatation
 - changing upper dilatation? (indirect signs)
Imaging methods - US

- **US signs for VUR**
 - gaping ostium, VUR visualisation, dilatation
 - bladder wall thickening, trabeculation (unspecific)
 - lateralized or duplex ostium (indirect sign)
 - “urothelial sign” (indirect sign)
Imaging methods - US

- **US signs for VUR**
 - gaping ostium, VUR visualisation, dilatation
 - wall thickening, lateralized/duplex ostium
 - other (indirect) hints & signs (unspecific)
 - residual volume
 - renal scar, size difference, dysplasia
Imaging methods - US

• US signs for VUR
 – gaping ostium, VUR visualisation, dilatation
 – wall thickening, lateralized/duplex ostium
 – other (indirect) hints & signs (unspecific)
 ▪ residual volume, renal scar, dysplasia
 ▪ urethral & pelvic floor pathology
Imaging methods - US

• US signs for (upper) UTI
 – altered parenchymal echogenicity
 – increased size, spherically swollen
 – wall thickening - secondary?
 – peripyleonal echogenicity
 – other (indirect) hints & signs
 ▪ laxity & dilatation with echoes in urine
 ▪ perirenal alteration
Imaging methods - US

- US in complications of UTI
 - pyohydronephrosis
 - necrosis / abscess
 - xanthogranulomatous pyelonephritis
 - stone formation, fungus ball
 - tuberculosis
Imaging methods - US

• US in complications of UTI
 - pyohydronephrosis
 - necrosis / abscess
 - xanthogranulomatous pyelonephritis
 - pseudotumnor / lobar nephroma
Imaging methods - US

- **US in UTI - role of aCDS**
 - segmental perfusion defects
 - necrosis / abscess
 - role of ce-US?
Imaging methods - US

- US in UTI - role of aCDS
 - segmental perfusion defects necrosis/abscess, ce-US?
 - incidental alternate findings
 - infarction, retro-aortal left renal vein
 - tumor, stones ...

Restrictions of basic US

- no panoramic display
- poor for definite VUR diagnosis
- high observer variability
- restrictions for
 - anatomy of urethra
 - ureteral anatomy
 - diverticula
 - (small) scars
 - bladder function assessment

⇒ additional imaging tools essential
Imaging methods

- **VCUG** = "gold standard"
 - excellent panoramic display
 - proper technique essential
 - pulsed fluoroscopy
 - last image hold
 - short screening time
 - reduce shots
 - modified protocol
 - allows function assessment
 - cyclic filling helpful / recommended
 - better yield ...
Imaging methods - VCUG

- How does it work?
 - catheterism
 - trans-urethral? supra-pubic?
 - check urine, empty bladder
 - sedation? fasted child?
 - fill bladder with radiopaque CM
 - observe intermittently fluoroscopically
 - drip infusion (physiologic pressure) till urge
 - some advocate pressure infusion to speed up
 - unable to obtain functional information
 - may influence findings (bladder volume, VUR incidence & degree ...)
Imaging methods - VCUG

- How does it work?
 - catheterism, fill bladder with CM
 - document findings
 - before/during/after voiding
 - use last image hold & spot films
 - bladder capacity? bladder neck?
 - observe residual urine
 - drainage of refluxed CM ...
 - describe & grade VUR
Imaging methods - VCUG

- **VCUG benefits**
 - standardized grading
 - less investigator dependent
 - excellent anatomy
 - ureter, diverticula, urethra
 - reproducible ...
Imaging methods - VCUG

• VCUG restrictions
 – catheter = invasive
 – radiation burden
 ▪ particularly in girls
 – short, particularly if only 1 cycle ...
 ▪ for radiation protection
 = incomplete / wrong result
 – non-physiologic approach
 ▪ artificial function disturbance
VUR imaging - alternate methods

Alternate VUR detection techniques

1) ce-VUS
 - bladder filling with NaCL + US-CM
 - observe before, during after ...
Alternate VUR detection techniques

1) ce-VUS
 - bladder filling with NaCL + US-CM, observe & scan ...
 - excellent VUR detection & grading
 - urethral assessment possible, but more difficult
Alternate VUR detection techniques

1) ce-VUS

2) radionuclide cystography (RNC)
 - bladder filling with tracer = direct RNC
 - catheter needed, as in VCUG
 - observe with gamma camera
 - before, (during?), after voiding
 - longer observation period
 - less radiation burden ...
 - any activity in ureter & kidney area = VUR

grading established, standardised - see European Society for Nuclear Medicine
Alternate VUR detection techniques

1) ce-VUS

2) radionuclide cystography (RNC)
 - direct RNC
 - indirect RNC: no catheterism, must be toilet trained
 - late phase of dynamic Tc\(^{99m}\) MAG3 renography
 = bladder filled physiologically, no catheter needed
 - observe for activity increase in kidney area with gamma camera
 o after clearance of activity from kidney = late phase
 o before, (during?), after voiding
VUR imaging - alternate methods

Alternate VUR detection techniques

1) ce-VUS

2) radionuclide cystography (RNC)
 - direct & indirect RNC
 - setbacks of RNC
 - poor anatomical resolution (urethra, kidney ...)
 - restricted grading
 - less comparability with VCUG ...
 - no bladder function assessment
 - some radiation, catheterism (direct RNC)
 - only after 4-5 y of age (cooperative patient)
VUR imaging - alternate methods

Alternate VUR detection techniques

- ce-VUS, RNC
- MRI (MR-VCUG)
 - several papers report feasibility
 - promising technique, reasonable results
 - method
 - catheterism & Gd (0.005 mmol) filling of bladder
 - rapid switching T1-GRE or T1-TRUFI covering entire urinary tract
 - CM reflux to upper tract detectable, urethra assessable
 - present restrictions
 - restricted resolution? availability? functional assessment?
 - presently "work in progress"

e.g., Arthurs OJ, Eur Radiol 2011
Imaging methods

- **IVU**
 - declining importance in children
 - NO importance in VUR / RNP / UTI setting any longer
 - however, has been major imaging tool
 - initially only comprehensive assessment of upper UT
 - could evaluate anatomy + function
 - detection of scaring (Smellie)
 - easy accessible, standardized, reliable
 - replaced by US, (DMSA) scintigraphy, MRI
 - less / no radiation, no / less / other contrast needs ...
 - improved diagnostic capabilities ...
Imaging methods - IVU

• If you do it, do it properly
 – reduce number of films
 – no zonograms
 – adapted CM & radiation dose, hydration ...
 ▪ age adapted, adequate filters
 ◦ also DR needs to adapted to pediatric needs
 ▪ initial US to properly plan investigation
 ▪ individually choose image timing
Imaging methods - IVU

ESPR procedural recommendation

Preparation: NPO, hydration, creatinine, venous line ...
- age: minimum 4-6 weeks infants: before next meal

Procedure
- adapt exposure & contrast agent
- proper use of filters, grid, shutters
 - renal area, or KUB (include symphisis)
- initial KUB only if indispensable (e.g., urolithiasis)
- reduced number exposures:
 - one early renal view at 5 min
 - single late KUB at 15-20 min
 - additional focused images, if needed for treatment

diuretic IVU: Furosemide iv. 1 mg/kg BW (max. 20 mg) 20 min before view
- inject 5 min before, with, or 5-10 min after CM application

Goal: answer specific query with minimal radiation (ALARA)
- avoid multiple, unnecessary or particularly tomographic views

Indications
- restricted access to MRU/CT
- pre- or/and post-operative
- urolithiasis, (trauma)
- caliceal diverticula
- ureteral & subtle caliceal pathology

NOTE:
- previous dedicated US mandatory

IV contrast dose

<table>
<thead>
<tr>
<th>Age [year]</th>
<th>ml/kg BW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>>4</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Imaging methods

- **Renal scintigraphy** = gold standard for assessment of:
 - renal involvement in UTI (?)
 - scarring
 - (split) renal function
 - usually Tc99m DMSA as tracer
 - better than MAG3 for VUR- / UTI-associated queries
Imaging methods - renal scintigraphy

- **Gold standard**

- **BUT:**
 - sufficient renal function mandatory
 + anatomic information needed
 - initial US? MRI?
 - examiner variability
 - (sedation?) ...

- Split function: \(R 40\%: L 60\% \)
 - "RUP 16\%, RLP 24\%"?
 - \(\Rightarrow \) RUP >5\%, RLP 35-40\%

Courtesy U. Willi
Imaging methods

- **Renal MRI & MRU** = future gold standard for assessment of
 - scars, upper UTI, dysplasia, upper UT involvement ...
 - complications, DDx
 - UT-malformations
 - (split) function & drainage
 - GFR? VUR? ...
 - constantly new techniques being introduced
 - enhanced functional imaging
 - DWI, perfusion, BOLD ... - rTx with VUR & sars?
Imaging methods - renal MRU

- Method
 - scars - T2* & IR sequences
 - upper UTI: + Gd-enhanced T1
 - T1 fs, GRE, VIBE, + Perfusion, DWI …
 - malformations: T2-MRU
 - 3d sequences after Frusemide
Imaging methods - renal MRU

- **Method**
 - scars - T2* & IR sequences, upper UTI: + Gd-enhanced T1
 - malformations: T2-MRU
 - function & drainage
 - T1 & BOLD & DWI
 - function assessment possible
 - split renal function & GFR calculated
 - ce-MRI essential for complications
Imaging methods - renal MRU

- Method
 - scars - T2* & IR sequences upper UTI: + Gd-enhanced T1
 - malformations: T2-MRU, function & drainage

BUT: partially still "work in progress"
 - restricted availability, costs, expertise, sedation needs ...

= future one stop imaging after initial US?...
Dilemma in imaging of UTI (& VUR)

Whom?

When?

How?

Whom?
New guidelines

• National Institute For Clinical Excellence (NICE), UK, 2007

• American Urological Association (AUA), 2010

• ESPR/ESUR workgroup-session, 2007

• Numerous national guidelines

• Various guidelines by (sub)specialties
How to image?

- **US**
- **VCUG / RNC, ce-VUS**
- **DMSA**

has been addressed & discussed!
How to image?

- **US**
- **VCUG / RNC, ce-VUS**
- **DMSA**
- **IVU - no role in UTI**
- **MRI - no defined place in routine imaging of UTI**
 - mostly for complications or associated malformation ...
- **CT - only in complications, if no MRI available**
 - **DDx, underlying/secondary stones ...**
When to image?
When to image?

Major questions

- early US effective for outcome?
 - first day? first days?
 - feasible & realistic
 - sufficient quality granted?
 - can US answer relevant questions?
 - in all? in whom?
 - only with unclear upper UTI?
 - with no earlier (fetal, neonatal ...) UT screening?
 - only in complicated UTI?
When to image?

Major questions

• early US?

• early DMSA?
 – differentiation upper versus lower UTI?
 – diagnostic or prognostic, treatment relevant impact?
 – consider restrictions
 ▪ needs anatomic imaging for correct reading = needs US
 ▪ involvement ≠ scar – but only scaring relevant …
 – assessment of scaring
 ▪ ONLY reliable 4 - 6 months after UTI
When to image?

Major questions

• early US? early DMSA?

• early VCUG? other VUR assessment test?
 – urine should be clear, UTI treated
 – what for & in whom?
 ▪ impact on acute treatment? long term relevance?
 ▪ in all infants with UTI, what about older children?
 – only with upper or complicated UTI / scaring?
 – benefit of early VUR assessment
 ▪ only compliance may be an argument
When to image?

Major questions

• early US? early DMSA?
• early VCUG? other VUR assessment test?
• MRI needed
 – evident in complication or underlying condition

≡

must be timed individually
When to image?

Major questions
- i.e., depends on query & suspicion & compliance & clinic
 - e.g., in / after upper UTI, with scars, dysplasia ...
 - earliest option for VCUG: as soon as urine is sterile
 - best at 4-6 weeks after UTI, no emergency ... - don't rush
 - prompt US & CT/MRI in complications, severe course ...
 - DMSA for scarring after 4-6 mo
When to image?

Major questions

• early US? early DMSA? early VCUG? MRI?
• i.e., depends on query & suspicion & compliance & clinic
 – e.g., in / after upper UTI, with scars, dysplasia ...
 – PUV, neonatal renal failure ...
 = early imaging (US + VCUG) = first 24 hours
 – suspicion of high grade VUR / complex malformation
 = neonatal assessment
 ▪ less urgent, parental compliance? US day 5-7 …, VCUG at all?
 ▪ don’t rush
 ▪ DMSA after 3-6 mo
Whom to image?
Whom to image?

When to investigate entire UT (early?)

- at least in (complicated) febrile UTI
 - clinically unclear, risk factors ...
 - history of family condition
 - not responding to treatment, urosepsis ...
 - infants, unknown urinary tract anatomy
 - known relevant UT malformation
 - signs for sever disease, not responding ...
Whom to image?

When to look for entire UT

• at least in (complicated) febrile UTI
 – clinically unclear, risk factors …
 – known relevant UT malformation …

• always performed by comprehensive US as first step
 – other / further imaging planned according to results
Whom to image?

When to look for VUR

• (recurrent) febrile (complicated) UTI
 – pathology on DMSA / US
 ▪ renal involvement / damage
 ▪ dilatation or bladder pathology
 ▪ <5 years, therapy implication
 – relevant UT malformation (DDx)
 ▪ infravesical obstruction (boys)
 ▪ megaureter, UPJO …
 ▪ duplex kidney …
Whom to image?

When to look for VUR

- (recurrent) febrile (complicated) UTI
 - pathology on DMSA / US
 - relevant UT malformation (DDx)
 - lower UT dysfunction
 - family screening?
 - neonatal HN?
 - grade? only boys? when?
 - therapy implications? …

= in selected patients (groups)
Whom to image?

How to look for VUR

- VCUG
 - boys / neonates
 - pre-operatively, complex malformation
- ce-VUS (& RNC)
 - girls, follow-up, family screening? bed side
 - exception: indirect RNC for all older patients?
 - supplemented by VCUG, when positive & surgery planned?
 - therapy implications? ...
How to image: When to use what?

European consensus recommendations for VUR

• **VCUG**
 - infant boys, preoperative
 - complex malformation
 - query “urethra” or “diverticula”

• **ce-VUG & RNC**
 - girls
 - follow-up
 - family screening
 - if RNC ⇒ + comprehensive US
How to image: When to use what for VUR?

VUR?

(infant) boys, PUV, malformation -> VCUG

- stop

+ US follow-up + DMSA (fMRI?)

ce-VUS, RNC, (VCUG*)

girls, all others -> - stop

* VCUG in suspected infra-vesical obstruction, para-ostial diverticula, pre-operatively, no ce-VUS / RNC available
Task of (pediatric) radiology

- Know potential diseases & conditions & DDx
 - pathogenesis, origin, history

- Know suitable imaging techniques
 - potential, risks, & limitation, economical aspects

- Know implications of imaging results
 - on patient management & prognosis

- Suggest imaging algorithm
 - adapt individually, follow established guidelines
Discussion

Role of imaging for VUR in combination with UTI

- Remains controversial
 - depends on therapy consequences
 - growing knowledge, new concepts ...
 - like a pendulum

- Try to reduce overuse of imaging
 - invasive (catheter)
 - radiation (VCUG, RNC)
 - BUT: lack of approved US-CM (ce-VUS)
 - without missing important conditions
Role of imaging for VUR in combination with UTI

• Remains controversial

• Try to reduce overuse of imaging

• Avoid missing important conditions
 – with long term sequelae
 – goal: prevent harm to the kidney
 = if you do invasive imaging
 do it right, don’t miss important aspects
Discussion

Role of imaging for VUR in combination with UTI

• controversial, reduce overuse, avoid missing conditions

⇒ extensive use of comprehensive US
 – high quality, extended criteria
 – post-void check
 – apply modern methods ...
Conclusion

• Imaging in UTI remains controversial
 – still: an important condition, deserves dedicated imaging
 ▪ though less generous indications than earlier

 But: imaging must address all essential aspects

• Properly select patients
 – based on history
 – and on initial detailed US findings
 ▪ with respect to therapeutic consequences
 ▪ and possible long term sequelae
Conclusion

- Imaging in UTI remains important
- Properly select patients
- Select appropriate method
 - US, VCUG, ce-VUS, RNC, DMSA, MRU ...
 - based on availability & query / history, when in course
 - gender, treatment plan, available expertise ...
 - include assessment of intra-renal VUR, dysfunction
 - high quality must be granted
 - avoid too frequent follow-up
 - proper timing, correct technique
 - consequence?
„Take away“

• Established “gold standards” exist
 – not to be dropped light mindedly
 ▪ individualized imaging approach?

• New imaging concepts
 – at present complimentary, introduce only when proven
 = evaluation of new modalities & algorithms essential
 ▪ potential, impact on management & outcome
 ▪ strong research efforts necessary

• If benefit proven, make it available to all
 = introduce altered imaging protocols at high quality
US

- Most important diagnostic tool
- Always first modality
 - sometimes only investigation in UTI
- Acute phase + follow-up

US

- Most important diagnostic tool
- *Always first modality, acute phase + follow-up*
- To be performed by pediatratically experienced investigator
- Include (a)CDS, careful assessment
 - well hydrated child
 - pre- + post-void imaging
 - use aCDS = reduces need for DMSA

US

• Most important diagnostic tool, always first modality
• Acute + follow-up, experienced investigator, (a)CDS …
• Allows
 – grading of UTI
 – detection of obstruction & malformation
 – assessment of complications & stones & …
 – evaluation of (evidence of) VUR
NICE Guideline

<table>
<thead>
<tr>
<th>Age</th>
<th>responds well to treatment in 48 h</th>
<th>atypical UTI 1</th>
<th>recurrent UTI 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age <6months</td>
<td>US 3</td>
<td>US, DMSA, VCUG</td>
<td>US, DMSA, VCUG</td>
</tr>
<tr>
<td>Age 6 months - 3 years</td>
<td>None</td>
<td>US + DMSA 4</td>
<td>US + DMSA 4</td>
</tr>
<tr>
<td>Age > 3 years</td>
<td>None</td>
<td>US</td>
<td>US + DMSA 4</td>
</tr>
</tbody>
</table>

= routine use of imaging for localization of UTI not recommended

But: in young children clinical & laboratory diagnosis can be difficult

1. Atypical UTI: Non-Escherechia coli UTI: seriously ill, poor urine flow, abdominal or bladder mass, raised creatinine, septicemia, failure to respond to treatment with suitable antibiotics within 48 h
2. Two or more episodes of UTI with acute pyelonephritis/upper urinary tract infection or one episode of UTI with acute pyelonephritis/upper urinary tract infection plus one or more episode of UTI with cystitis/lower urinary tract infection or three or more episodes of UTI with cystitis/lower urinary tract infection
3. If ultrasound is abnormal, consider a VCUG
4. Consider VCUG if dilatation on ultrasound, poor urine flow, non-E. coli infection, family history of VUR
ESPR imaging algorithm - UTI

if clinically clear + known normal urinary tract anatomy
- if respond well to treatment,
 - only delayed imaging for scaring in upper UTI?

UTI

- recommended within first days, particularly in severe symptoms and in infants / neonates

US + power Doppler

- normal US
- clinically cystitis

- stop

- follow-up US?

- normal

normal US

- no power Doppler or Doppler equivocal
- But: clinically upper UTI

Pyo(hydro)nephrosis => PCN

- if no response to AB-treatment

Pyelonephritis / Nephritis

- aPN/scar/upper UTI

follow-up US

- VUR-evaluation
 - always in infants
 - mostly in < 5 years
 - recurrent UTI in > 5 ys
 - VCUG in boys
 - ce-VUS in girls (if available)
 - for VUR follow-up
 - ce-VUS or RNC (if available)

late DMSA

- after 6 - 12 months
- or (functional) renal MRI

bladder function studies

- > 4 years, urodynamics

UTI criteria: urine sample and blood count

- Leucocyturia, positive nitrite
- positive culture (10^4 = catheter sample, 10^6 normal voiding), Leucocytosis, elevated CRP
- reliable clinical diagnosis essential = most important entry criteria for imaging!!

for DD => MRI/CT; Indications:

- complicated stone disease (CT, un-enhanced scan)
- complicated UTI (XPN, Tb, abscess ...)
- DD tumour, complicated / infected cyst

The NICE Guideline
Controversies

• Do we pick up those at risk of recurrence
• Do we pick up those at risk of renal scarring?
• Evaluation of guidelines & recommendations?
• Evidence vs economy vs eminence?
• Invasiveness justified? ...
• Long term impact?

Tse NK et al. (2009) Imaging studies for first urinary tract infection in infants less than 6 months old: can they be more selective? Pediatr Nephrol 24:1699-1703
Controversies

- Pick up those at risk of recurrence & renal scarring?
- Evidence versus economy versus eminence? Invasive?
- Proper evaluation of guidelines & recommendations?
- “...The best approach for imaging studies in children with UTI is debatable - because of doubtful evidence & concerns over actual value of these studies in altering management & final outcome.”
- “... In view of all these studies and recommendations, VUR (& UTI) management is a subject of constant debate. The need for higher-quality evidence to guide management is increasing.”
Conclusion

• Imaging in UTI remains important, but controversial
 – to detect underlying pathology in selected patients
 – to monitor kidneys in order to prevent renal scarring

• Focus moved - from «down-up» to «top-down» approach
 – with focus on kidney
 – preferably using non-invasive, non-radiating imaging

• Patients must be carefully selected
 – for more invasive investigations, particularly older children
 – (bladder) function will become even more important

• Proper validation of new guidelines needed
Questions?
- welcome!
Imaging methods - urosonography

ESPR procedural recommendation

well hydrated patient, full bladder, adequate equipment/transducer/training ...

Urinary bladder: size (capacity), shape, ostium, wall, bladder neck
include distal ureter & retrovesical space/inner genitalia, urachus? ...
optional: CDS for urine inflow, perineal US, scrotal US ...

Kidneys: lateral and/or dorsal, longitudinal & axial sections
parenchyma? pelvo-caliceal system?
standardised measurements in 3 dimensions & volume calculation
if dilated: max. axial pelvis & calix, narrowest parenchymal width, + UPJ
optional: (a)CDS & duplex-Doppler ...

Post void evaluation
Bladder: residual volume, bladder neck, shape & configuration
Kidneys: dilatation of pelvo-caliceal system / ureter changed?
optional: contrast-enhanced urosonography, 3DUS ...

additional abdominal US survey recommended
Imaging methods - VCUG

ESPR procedural recommendation

No diet restriction or enema, urine analysis, potentially antibiotics ...

catheterism: feeding tube, 4-8 french or suprapubic puncture
latex precaution: neuro tube defect, bladder extrophy ...

fluoroscopic view of renal fossae & bladder, initial + early filling
Bladder filling with radiopaque contrast
gravity drip = bottle 30-40 cm above table, watch dripping, AB?

fluoroscopy: if signs of increased bladder pressure, imminent voiding, urge ...
 bilateral oblique views of distal ureters, include catheter
document VUR, include kidney (spot film, intra-renal reflux)

when voiding: remove catheter, unless cyclic VCUG = 3 fillings, 1st y(s)
 female: 2 spots of distended urethra (slightly oblique)
 male: 2-3 spots during voiding (ap & high oblique / lateral)
 ⇒ include renal fossae during voiding, if VUR => spot film

after voiding: ap view of bladder & renal fossae
 assess contrast drainage form kidney if refluxed

Note: VUR staging, AB-prophylaxis? ...
Imaging methods - ce-VUS

ESPR procedural recommendation

No diet restriction or enema, urine analysis; AB as in VCUG ...

Catheterism: feeding tube, 4-8 french, or suprapubic puncture

anaesthetic lubricant or coated plaste

Standard US of bladder & kidneys (supine, ± prone)

Bladder filling with NaCl (only from plastic containers)

Install US contrast medium, e.g., SonoVue®, 0.5-1.0% of bladder volume

slow, US monitoring, potentially fractional administration

Peri-/ post-contrast US of bladder + kidneys: continuous, alternating

US modalities: fundamental, HI, CDS, contrast specific methods

alternate scans of right & left side during & after filling

During/after voiding: US of bladder & kidneys & urethra

supine ± prone, laying or sitting or standing

VUR diagnosis: echogenic micro-bubbles in ureters or renal pelves
UTI

US + αCDS especially if severe or in infant

- normal+clinically cystitis
- normal+clinically upper UTI
- pyelitis/nephritis
- pyo/hydro-nephrosis

DMSA in acute phase

Normal

consider repeat US

Follow-up US

VUR-evaluation
- always in infants
- usually if <4 years
- usually if recurrent UTI

DMSA in 4-6 months (or fMRU)

Bladder function studies (Urodynamics if over 6 years)

STOP

If normal

If normal US

DMSA

- The main role of DMSA is to detect renal scarring 4-6 months post UTI

- Large renal scars can also be seen on US, but US is not as sensitive for renal scarring as DMSA